40 research outputs found

    Improved Lignin Polyurethane Properties with Lewis Acid Treatment

    Get PDF
    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by decreases in water contact angle. Polyurethanes were then prepared by first preparing a prepolymer based on mixtures of toluene-2,4-diisocyanate (TDI) and unmodified or modified lignin, then polymerization was completed through addition of polyethylene glycol (PEG), resulting in mass ratios of TDI:lignin:PEG of 43:17:40 in the compositions investigated here. The mixture of TDI and unmodified lignin resulted in a lignin powder at the bottom of the liquid, suggesting it did not react directly with TDI. However, a homogeneous solution resulted when TDI and the hydrogen bromide-treated lignin were mixed, suggesting demethylation indeed increased reactivity and resulted in better integration of lignin into the urethane network. Significant improvements in mechanical properties of modified lignin polyurethanes were observed, with a 6.5-fold increase in modulus, which were attributed to better integration of the modified lignin into the covalent polymer network due to the higher concentration of hydroxyl groups. This research indicates that chemical modification strategies can lead to significant improvements in the properties of lignin-based polymeric materials using a higher fraction of an inexpensive lignin monomer from renewable resources and a lower fraction an expensive, petroleum-derived isocyanate monomer to achieve the required material properties

    Lignopolymers As Viscosity-Reducing Additives in Magnesium Oxide Suspensions

    Get PDF
    Lignopolymers are a new class of polymer additives with the capability to be used as dispersants in cementitious pastes. Made with kraft lignin cores and grafted polymer side- chains, the custom-synthesized lignopolymers were examined in terms of the molecular architecture for viscosity reducing potential in inert model suspensions. Lignin-poly(acrylic acid) (LPAA) and lignin-polyacrylamide (LPAm) have been found to vary the rheology of magnesium oxide (MgO) suspensions based on differences in chain architecture and particle- polymer interactions. A commercial comb-polymer polycarboxylate ester was compared to LPAA and LPAm at 2.7 mg/mL, a typical dosage for cement admixtures, as well as 0.25 mg/mL. It was found that LPAm was a more effective viscosity reducer than both LPAA and the commercial additive at low concentrations, which was attributed to greater adsorption on the MgO particle surface and increased steric dispersion from PAm side-chain extension. The influence of chain adsorption and grafted side-chain molecular weight on rheology was also tested

    Hierarchical Machine Learning Model for Mechanical Property Predictions of Polyurethane Elastomers From Small Datasets

    Get PDF
    Polyurethanes are a broad class of material that finds application in coatings, foams, and solid elastomers. The urethane chemistry allows a diversity of monomers to be used, and prediction of mechanical properties, which are determined by complex interplay between monomer chemistry and chain architecture, is an unresolved challenge. Urethanes are based on aromatic or cyclic isocyanates and linear or branched polyols, and polymerization results in linear chains for bifunctional monomers or branched chains for multifunctional monomers. Strong intermolecular interactions between aromatic groups result in the formation of hard-segment domains that generate physical crosslinks between disorganized rubbery domains and anchor the material microstructure, contributing to resistance to deformation. Here, a general hierarchical machine learning (HML) model for predicting the stress-at-break, strain-at-break, and Tan δ for thermoplastic and thermoset polyurethanes is presented. The algorithm was trained on a library of 18 polymers with different diisocyanates, bifunctional or trifunctional polyols, and NCO:OH index. HML reduces data requirements through robust embedding of domain knowledge and surrogate data in a middle layer that bridges input variables (composition) and output responses (mechanical properties). In this work, the middle layer included information on overall polymer composition, predictions of chain architecture derived from Monte Carlo simulations of polymerization, information on interchain interactions from empirically derived molecular potentials and shifts in infrared (IR) spectroscopy absorbances. The HML predictions are shown to be more accurate than those from a random forest model directly relating composition and properties, suggesting that embedding domain knowledge provides significant advantages in predicting the properties of complex material systems based on small datasets

    Evaluating Connectivity between Marine Protected Areas Using CODAR High-Frequency Radar

    Get PDF
    To investigate the connectivity between central California marine protected areas (MPAs), back-projections were calculated using the network of high-frequency (HF) radar ocean surface current mapping stations operated along the California coast by the member institutions of the Coastal Ocean Currents Monitoring Program with funding provided by California voters through Propositions 40 & 50 and administered by the State Coastal Conservancy. Trajectories of 1 km resolution grids of water particles were back-projected from ten MPAs each hour, out through 40 days in the past, from each day in 2008, producing a map of where surface waters travel over a 40-day period to reach the MPAs - and visualizations of the length of time the waters travel along these paths. By comparing the travel times of those back-projected track-points that crossed between MPA regions, the connection time between MPAs along the State\u27s central coast was assessed. Repeating these calculations resulted in a connectivity matrix between the MPAs in the region, and may be useful for assessing connectivity for the important invertebrate and fish larvae that are restricted to the surface ocean during a fraction of their lifecycle

    The rationale and design of the antihypertensives and vascular, endothelial, and cognitive function (AVEC) trial in elderly hypertensives with early cognitive impairment: Role of the renin angiotensin system inhibition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prior evidence suggests that the renin angiotensin system and antihypertensives that inhibit this system play a role in cognitive, central vascular, and endothelial function. Our objective is to conduct a double-blind randomized controlled clinical trial, the antihypertensives and vascular, endothelial, and cognitive function (AVEC), to compare 1 year treatment of 3 antihypertensives (lisinopril, candesartan, or hydrochlorothiazide) in their effect on memory and executive function, cerebral blood flow, and central endothelial function of seniors with hypertension and early objective evidence of executive or memory impairments.</p> <p>Methods/Design</p> <p>The overall experimental design of the AVEC trial is a 3-arm double blind randomized controlled clinical trial. A total of 100 community eligible individuals (60 years or older) with hypertension and early cognitive impairment are being recruited from the greater Boston area and randomized to lisinopril, candesartan, or hydrochlorothiazide ("active control") for 12 months. The goal of the intervention is to achieve blood pressure control defined as SBP < 140 mm Hg and DBP < 90 mm Hg. Additional antihypertensives are added to achieve this goal if needed. Eligible participants are those with hypertension, defined as a blood pressure 140/90 mm Hg or greater, early cognitive impairment without dementia defined (10 or less out of 15 on the executive clock draw test or 1 standard deviation below the mean on the immediate memory subtest of the repeatable battery for the assessment of neuropsychological status and Mini-Mental-Status-exam >20 and without clinical diagnosis of dementia or Alzheimer's disease). Individuals who are currently receiving antihypertensives are eligible to participate if the participants and the primary care providers are willing to taper their antihypertensives. Participants undergo cognitive assessment, measurements of cerebral blood flow using Transcranial Doppler, and central endothelial function by measuring changes in cerebral blood flow in response to changes in end tidal carbon dioxide at baseline (off antihypertensives), 6, and 12 months. Our outcomes are change in cognitive function score (executive and memory), cerebral blood flow, and carbon dioxide cerebral vasoreactivity.</p> <p>Discussion</p> <p>The AVEC trial is the first study to explore impact of antihypertensives in those who are showing early evidence of cognitive difficulties that did not reach the threshold of dementia. Success of this trial will offer new therapeutic application of antihypertensives that inhibit the renin angiotensin system and new insights in the role of this system in aging.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00605072</p

    Design Principles for Cytokine-Neutralizing Polymers

    No full text
    Newell R. Washburn of Carnegie Mellon University presented a lecture on November 19, 2009 at 11:00 am in the Suddath Seminar Room, IBB Building, Georgia Tech Campus

    The underpotential deposition of lead onto gold(111) as studied by voltammetry and atomic force microscopy

    No full text
    Thesis (B.S.) in Chemistry--University of Illinois at Urbana-Champaign, 1993.Includes bibliographical references (leaves 23-25)U of I OnlyTheses restricted to UIUC community onl

    Improved Lignin Polyurethane Properties with Lewis Acid Treatment

    No full text
    Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by decreases in water contact angle. Polyurethanes were then prepared by first preparing a prepolymer based on mixtures of toluene-2,4-diisocyanate (TDI) and unmodified or modified lignin, then polymerization was completed through addition of polyethylene glycol (PEG), resulting in mass ratios of TDI:lignin:PEG of 43:17:40 in the compositions investigated here. The mixture of TDI and unmodified lignin resulted in a lignin powder at the bottom of the liquid, suggesting it did not react directly with TDI. However, a homogeneous solution resulted when TDI and the hydrogen bromide-treated lignin were mixed, suggesting demethylation indeed increased reactivity and resulted in better integration of lignin into the urethane network. Significant improvements in mechanical properties of modified lignin polyurethanes were observed, with a 6.5-fold increase in modulus, which were attributed to better integration of the modified lignin into the covalent polymer network due to the higher concentration of hydroxyl groups. This research indicates that chemical modification strategies can lead to significant improvements in the properties of lignin-based polymeric materials using a higher fraction of an inexpensive lignin monomer from renewable resources and a lower fraction an expensive, petroleum-derived isocyanate monomer to achieve the required material properties

    Polymer-Grafted Lignin Surfactants Prepared via Reversible Addition–Fragmentation Chain-Transfer Polymerization

    No full text
    Kraft lignin grafted with hydrophilic polymers has been prepared using reversible addition–fragmentation chain-transfer (RAFT) polymerization and investigated for use as a surfactant. In this preliminary study, polyacrylamide and poly­(acrylic acid) were grafted from a lignin RAFT macroinitiator at average initiator site densities estimated to be 2 per particle and 17 per particle. The target degrees of polymerization were 50 and 100, but analysis of cleaved polyacrylamide was consistent with a higher average molecular weight, suggesting not all sites were able to participate in the polymerization. All materials were readily soluble in water, and dynamic light scattering data indicate polymer-grafted lignin coexisted in isolated and aggregated forms in aqueous media. The characteristic size was 15–20 nm at low concentrations, and aggregation appeared to be a stronger function of degree of polymerization than graft density. These species were surface active, reducing the surface tension to as low as 60 dyn/cm at 1 mg/mL, and a greater decrease was observed than for polymer-grafted silica nanoparticles, suggesting that the lignin core was also surface active. While these lignin surfactants were soluble in water, they were not soluble in hexanes. Thus, it was unexpected that water-in-oil emulsions formed in all surfactant compositions and solvent ratios tested, with average droplet sizes of 10–20 μm. However, although polymer-grafted lignin has structural features similar to nanoparticles used in Pickering emulsions, its interfacial behavior was qualitatively different. While at air–water interfaces, the hydrophilic grafts promote effective reductions in surface tension, we hypothesize that the low grafting density in these lignin surfactants favors partitioning into the hexanes side of the oil–water interface because collapsed conformations of the polymer grafts improve interfacial coverage and reduce water–hexanes interactions. We propose that polymer-grafted lignin surfactants can be considered as random patchy nanoparticles with mixed hydrophilic and hydrophobic domains that result in unexpected interfacial behaviors. Further studies are necessary to clarify the molecular basis of these phenomena, but grafting of hydrophilic polymers from kraft lignin via radical polymerization could expand the use of this important biopolymer in a broad range of surfactant applications
    corecore